Analysis of simulated and spaceborne passive microwave brightness temperatures using in situ measurements of snow and vegetation properties
نویسندگان
چکیده
Variations in snow cover and vegetation in the Province of Quebec, Canada, were characterized for a transect spanning from 50uN to 60uN during the International Polar Year field campaign of February 2008. The main objective of this study was to compare measured (AMSR-E) and modeled (MEMLS) brightness temperature (Tb) and to analyze differences in the in situ measurement of snow water equivalent (SWE) and vegetation. Sampling involved detailed snow measurements on the ground in four different ecological environments. Measured and modeled SWE were compared using a thermodynamic multilayered snow model (SNOWPACK) driven with North American Regional Reanalysis (NARR) data. The root mean square error (RMSE) of modeled data compared with measurements was 63 mm (30%). The simulated SWE was generally underestimated throughout the transect but stayed within the large standard deviation observed for measured SWE. In situ snow measurements were used as input to a microwave emission model (MEMLS) to simulate Tb. An innovative approach using calibrated near-infrared reflectance photographs was used to characterize the effective snow grain-size parameter needed for the radiative transfer model. Although some results provided Tb predictions similar to AMSR-E data for certain areas, large differences remained for the majority of sampling sites. The derived RMSE of 16 K and 32 K, respectively, for 18.7 and 36.5 GHz (vertical polarization) throughout the transect cannot be explained solely in terms of grain-size variations introduced into the simulations. Local variability in snow structure and thickness produced large variability (up to 60 K within one AMSR-E pixel) compared with AMSR-E Tb throughout the transect (15 K for 18.7 GHz and 35 K for 36.5 GHz). Résumé. La variation latitudinale des propriétés nivales et de végétation est analysée le long d’un transect dans le nord du Québec, Canada durant une campagne de mesure associée à l’Année Polaire Internationale (Février 2008). L’objectif principal de l’article est de comparer les températures de brillance (Tb) mesurées (AMSR-E) et modélisées (MEMLS) et d’analyser les différences à l’aide de mesures de propriétés de neige (équivalent en eau de la neige, EEN, en particulier) et de végétation. L’échantillonnage a eu lieu le long d’un transect latitudinal (50–60uN) et des mesures détaillées de neige et de végétation ont eu lieu dans quatre différents environnements écologiques. Des valeurs mesurées et modélisées d’EEN sont comparées le long du transect en utilisant un modèle thermodynamique de neige (SNOWPACK) dirigé avec des données de réanalyses météorologiques (NARR). L’erreur quadratique moyenne par rapport aux valeurs mesurées se situe à 63 mm (30%). L’EEN simulé est généralement sous-estimé le long du transect, mais reste à l’intérieur du large écart-type issu des mesures (i.e. grande variabilité spatiale). Les mesures de neige in situ sont utilisées comme intrants à MEMLS en utilisant une approche innovatrice pour la caractérisation des grains de neige à l’aide de la photographie infrarouge. Même si certaines simulations de Tb se situent près des valeurs satellites, de larges différences sont observées pour la plupart des sites. L’erreur est de 16 K et 32 K respectivement pour les fréquences 19V et 37V le long du transect, et ne peut être entièrement expliquée par les variations sur la taille de grain. La variabilité spatiale de la structure du manteau neigeux génère une grande variabilité du Tb modélisé (jusqu’à 60 K à l’intérieur d’un pixel AMSR-E) lorsqu’on la compare aux valeurs satellitaires (15 K pour 19 GHz et 35 K pour 37 GHz).
منابع مشابه
Snow Microwave Emission Modeling of Ice Lenses within the Snowpack Using the Microwave Emission Model for Layered Snowpacks (MEMLS)
Ice lens formation, which follows rain on snow events or melt-refreeze cycles in winter and spring, is likely to become more frequent as a result of increasing mean winter temperatures at high latitudes. These ice lenses significantly affect the microwave scattering and emission properties and, hence, snow brightness temperatures that are widely used to monitor snow cover properties from space....
متن کاملInvestigating Relationships Between Land-Cover, Forest Structure, and In-Situ and Airborne Passive Microwave Snow Water Equivalent in a Boreal Forest Environment
The Meteorological Service of Canada (MSC) has developed a suite of land-cover sensitive algorithms to extract snow water equivalent (SWE) estimates from satellite passive microwave brightness temperatures. In the boreal forest, however, accurate passive microwave SWE retrievals using the MSC coniferous forest algorithm are hampered by consistent under-estimation. In February 2003, a collection...
متن کاملCREST-Snow Field Experiment: analysis of snowpack properties using multi-frequency microwave remote sensing data
The CREST-Snow Analysis and Field Experiment (CREST-SAFE) was carried out during January–March 2011 at the research site of the National Weather Service office, Caribou, ME, USA. In this experiment dual-polarized microwave (37 and 89 GHz) observations were accompanied by detailed synchronous observations of meteorology and snowpack physical properties. The objective of this long-term field expe...
متن کاملSnow Mass Measurements and the Effect of Stratigraphic Detail on 2 Inversion of Microwave Brightness Temperatures
Snow provides large seasonal storage of freshwater, and information about the distribution 6 of snow mass as Snow Water Equivalent (SWE) is important for hydrological planning and detecting 7 climate change impacts. Large regional disagreements remain between estimates from reanalyses, 8 remote sensing and modelling. Assimilating passive microwave information improves SWE estimates 9 in many re...
متن کاملGlobal Snow Mass Measurements and the Effect of Stratigraphic Detail on 2 Inversion of Microwave Brightness Temperatures
Snow provides large seasonal storage of freshwater, and information about the distribution 6 of snow mass as Snow Water Equivalent (SWE) is important for hydrological planning and detecting 7 climate change impacts. Large regional disagreements remain between estimates from reanalyses, 8 remote sensing and modelling. Assimilating passive microwave information improves SWE estimates 9 in many re...
متن کاملSimulation of spaceborne microwave radiometer measurements of snow cover from in-situ data and emission models
In this study, spaceborne brightness temperature measurements of snow-covered sparse forest are simulated from a daily data set collected at Sodankylä, Finland during winter 2006-2007. The data set consists of measurement data of soil, snow and air. The atmospheric effects are simulated with two different methods: from measurements near the ground and from balloon-borne radio sounding profiles....
متن کامل